3.4.1 \(\int (a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)} \, dx\) [301]

3.4.1.1 Optimal result
3.4.1.2 Mathematica [C] (verified)
3.4.1.3 Rubi [A] (verified)
3.4.1.4 Maple [A] (verified)
3.4.1.5 Fricas [C] (verification not implemented)
3.4.1.6 Sympy [F]
3.4.1.7 Maxima [F]
3.4.1.8 Giac [F]
3.4.1.9 Mupad [F(-1)]

3.4.1.1 Optimal result

Integrand size = 23, antiderivative size = 107 \[ \int (a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)} \, dx=\frac {4 a^2 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {8 a^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a^2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}} \]

output
2/3*a^2*sin(d*x+c)/d/sec(d*x+c)^(1/2)+4*a^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/c 
os(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*s 
ec(d*x+c)^(1/2)/d+8/3*a^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)* 
EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d
 
3.4.1.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.19 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.19 \[ \int (a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)} \, dx=\frac {a^2 \left (\frac {24 i \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )}{\sqrt {1+e^{2 i (c+d x)}}}+2 \left (-6 i-4 i \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right ) \sec (c+d x)+\sin (c+d x)\right )\right )}{3 d \sqrt {\sec (c+d x)}} \]

input
Integrate[(a + a*Cos[c + d*x])^2*Sqrt[Sec[c + d*x]],x]
 
output
(a^2*(((24*I)*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))])/Sqr 
t[1 + E^((2*I)*(c + d*x))] + 2*(-6*I - (4*I)*Sqrt[1 + E^((2*I)*(c + d*x))] 
*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]*Sec[c + d*x] + Sin 
[c + d*x])))/(3*d*Sqrt[Sec[c + d*x]])
 
3.4.1.3 Rubi [A] (verified)

Time = 0.71 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.565, Rules used = {3042, 3717, 3042, 4275, 3042, 4258, 3042, 3119, 4533, 3042, 4258, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\sec (c+d x)} (a \cos (c+d x)+a)^2 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^2dx\)

\(\Big \downarrow \) 3717

\(\displaystyle \int \frac {(a \sec (c+d x)+a)^2}{\sec ^{\frac {3}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 4275

\(\displaystyle \int \frac {\sec ^2(c+d x) a^2+a^2}{\sec ^{\frac {3}{2}}(c+d x)}dx+2 a^2 \int \frac {1}{\sqrt {\sec (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle 2 a^2 \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 4258

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+2 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+2 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 3119

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {4 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\)

\(\Big \downarrow \) 4533

\(\displaystyle \frac {4}{3} a^2 \int \sqrt {\sec (c+d x)}dx+\frac {2 a^2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {4 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4}{3} a^2 \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 a^2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {4 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {4}{3} a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 a^2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {4 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4}{3} a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a^2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {4 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {2 a^2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {8 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {4 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\)

input
Int[(a + a*Cos[c + d*x])^2*Sqrt[Sec[c + d*x]],x]
 
output
(4*a^2*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d 
+ (8*a^2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/ 
(3*d) + (2*a^2*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])
 

3.4.1.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3717
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]^(n_.))^(p_.), x_Symbol] :> Simp[d^(n*p)   Int[(d*Csc[e + f*x])^(m - n*p 
)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && 
  !IntegerQ[m] && IntegersQ[n, p]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4275
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^2, x_Symbol] :> Simp[2*a*(b/d)   Int[(d*Csc[e + f*x])^(n + 1), x], x] 
 + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b, d, 
 e, f, n}, x]
 

rule 4533
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) 
+ (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*((b*Csc[e + f*x])^m/(f*m)), x] + 
Simp[(C*m + A*(m + 1))/(b^2*m)   Int[(b*Csc[e + f*x])^(m + 2), x], x] /; Fr 
eeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]
 
3.4.1.4 Maple [A] (verified)

Time = 5.63 (sec) , antiderivative size = 228, normalized size of antiderivative = 2.13

method result size
default \(-\frac {4 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, a^{2} \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(228\)
parts \(-\frac {2 a^{2} \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}-\frac {2 a^{2} \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (4 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}+\frac {4 a^{2} \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(453\)

input
int((a+cos(d*x+c)*a)^2*sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)
 
output
-4/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2*(2*sin(1/ 
2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+ 
2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF( 
cos(1/2*d*x+1/2*c),2^(1/2))-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+ 
1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1 
/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2* 
c)^2-1)^(1/2)/d
 
3.4.1.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.25 \[ \int (a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)} \, dx=\frac {2 \, {\left (a^{2} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 i \, \sqrt {2} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 2 i \, \sqrt {2} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 i \, \sqrt {2} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 i \, \sqrt {2} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )\right )}}{3 \, d} \]

input
integrate((a+a*cos(d*x+c))^2*sec(d*x+c)^(1/2),x, algorithm="fricas")
 
output
2/3*(a^2*sqrt(cos(d*x + c))*sin(d*x + c) - 2*I*sqrt(2)*a^2*weierstrassPInv 
erse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 2*I*sqrt(2)*a^2*weierstrassPI 
nverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*I*sqrt(2)*a^2*weierstrass 
Zeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3 
*I*sqrt(2)*a^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + 
 c) - I*sin(d*x + c))))/d
 
3.4.1.6 Sympy [F]

\[ \int (a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)} \, dx=a^{2} \left (\int 2 \cos {\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}}\, dx + \int \cos ^{2}{\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}}\, dx + \int \sqrt {\sec {\left (c + d x \right )}}\, dx\right ) \]

input
integrate((a+a*cos(d*x+c))**2*sec(d*x+c)**(1/2),x)
 
output
a**2*(Integral(2*cos(c + d*x)*sqrt(sec(c + d*x)), x) + Integral(cos(c + d* 
x)**2*sqrt(sec(c + d*x)), x) + Integral(sqrt(sec(c + d*x)), x))
 
3.4.1.7 Maxima [F]

\[ \int (a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)} \, dx=\int { {\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\sec \left (d x + c\right )} \,d x } \]

input
integrate((a+a*cos(d*x+c))^2*sec(d*x+c)^(1/2),x, algorithm="maxima")
 
output
integrate((a*cos(d*x + c) + a)^2*sqrt(sec(d*x + c)), x)
 
3.4.1.8 Giac [F]

\[ \int (a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)} \, dx=\int { {\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\sec \left (d x + c\right )} \,d x } \]

input
integrate((a+a*cos(d*x+c))^2*sec(d*x+c)^(1/2),x, algorithm="giac")
 
output
integrate((a*cos(d*x + c) + a)^2*sqrt(sec(d*x + c)), x)
 
3.4.1.9 Mupad [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)} \, dx=\int \sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2 \,d x \]

input
int((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))^2,x)
 
output
int((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))^2, x)